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Introduction

Reason two basic problems about polynomial inequalities

1. Feasibility of polynomial system.

pi(x) =0

Pm(X) >0

Is there an x such that (1) is satisfied?

2. Checking non-negativity: Is g(x) > 0, Vx satisfying (1) ?



Justification: Feasibility

Feasibility checking is highly expressive.
- Example: MaxCut.
. Input: G=(V,E), |V|=n.
. Goal: Find S C V such that ’E(S,?)‘ is maximized.
. Polynomial Feasibility: For some 3 € ZT,

. n+ 1 degree-2 polynomials. Enumerate over polynomial
number of values of 3 and solve MaxCut.

Other examples: MaxClique, Max 3-SAT, Knapsack. Therefore,
polynomial feasibility checking problem is NP-Hard.



Goal

» Analyze a relaxation for the feasibility problem, and try to find
interesting situations where one can get a poly-time
algorithms.



Justification: Non-Negativity

» Checking non-negativity: Given f: {—1,1}" — R with
rational coefficients, decide if:
- f>0,Vxe {-1,1}" or,
- find an x € {—1,1}" such that f(x) < 0.

» Example MaxCut: Decide if MaxCut < c.

def
- Let fo(x) = § 300 ee(xi — %)%,

. Decide if ¢ — fg(x) >0, ¥x € {-1,1}".



Certifying Non-Negativity

Given f : {—1,1}" — R, find an “efficiently verifiable” certificate
of non-negativity.



SoS Certificates

Definition (SoS cert of non-neg (or) SoS proof of non-neg)
A degree-d SoS certificate of non-negativity of £ : {—1,1}" — R is
a list of polynomials g1,..., g, : {—1,1}" — R, such such that

. deg(gi) < d/2, and

() =<, g7 (x), Vx € {-1,1}".




Efficiently Verifiable (?)

Polynomials f, g1, ..., g, are represented as a vector of coefficients.

1. How large if r? (< n9, see later)

2. How large are coefficients of g;?



Efficiently Verifiable

Proposition (Efficiently Verifiable)

Suppose r < n9, all coefficients of g; are bounded in magnitude by
2pN()  Then the identity f = Y, g? over all x € {~1,1}" can
be checked in poly(n?) time.

Proof.
. Given gj, can compute g,-2, and Z,-S,giz in polynomial time.
. Check if (f = Y.<, 87)(x) =0, Vx € {-1,1}".

. Using the fact that coefficient vector representation is unique,
just check if f — 3, g7 =0

O



Fact (Unique Representation)

Vf:{—=1,1}" — R, there exists a unique representation of f: The
multi-linear representation of f

f=> FS]]x-
SCIn] i€S
(this representation is its Fourier transform)

— coefficient vector representation is unique.
(multilinear representation exists because x? = 1)



Are non-negative functions always certifiable?

Proposition (Certifiablity of non-negative functions)
Let f:{—1,1}" — R be non-negative over {—1,1}". Then, there
exists a deg(2n)-SoS certificate of non-negativity.

Proof.
. Consider g : {-1,1}" = R, and g(x) = /f(x).
. Every function on {—1,1}" is a polynomial of deg < n.
. f=g? = deg(2n)-SoS Certificate.



Tensor Notation

. Suppose vector v € R".
- v®2 e R™, where v(i,}) = vv;.

k
. v®k e R,



Proving Efficient Verifiability

Theorem (PSD Matrices and SoS Certificates)
f:{=1,1}" — R has a deg(d)-SoS certificate of non-negativity iff
there exists a matrix A such that A = 0, and

F(x) = ((1,)%%,A- (1,x)%%) .

» Parsing Notation:
- (1,x) € RO,
. (1,x)®%: populate in a vector all possible monomials in the
variable x of degree at most d/2.
A€ ROHFD)2x(n+1)72




Proof
- If Part:

. Let gi(x) = <e,-, B- (1,x)®%>, i.e., i-th entry of the vector.
. B is a matrix of constants, applied to monomials of degree at
most d/2, therefore, deg(g;) < d/2.

. Therefore,
( d/2

n+1)®
f(x) = Z g7(x).



Proof Cont...
- Only if Part: Suppose f has a degree-d SoS certificate.

f= Zg,-z, and gi(x) = <v,-,(1,x)®%> .
isr deg<d/2

i<r
= (l,x)®%, ZV;VIT (1>X)®g>
i<r
————



Efficient Verifiability

Corollary (Bound on r)

Iff:{—1,1}" — R has a degree-d SoS certificate, then it has a
certificate with r < (n+ 1)7/2,

Proof.
Follows from (2):

d112
2

f(x) =B (1,%)°




Efficient Verifiability

Lemma (Bit-complexity of SoS proofs)

Suppose f has a degree-d SoS certificate over {—1,1}". Then, we
can find a degree-d SoS certificate for f + &' in time

poly(n?,log 1/¢’, size(f)).

» {—1,1}" is important, and doesn’t necessarily hold for other
domains.



Proof
Since we are given f, we know that it can be efficiently represented.
Therefore, we try to bound the entries of A in terms of f.

. f(x) = <(1,x)®%,A : (1,x)®%>, for some A.
=30, ?uxu, where x, = [];c, Xi.

. Expanding the inner product, we see f, = 25,7 As, T, such
that odd(S+ T) =u, and |S|,|T| < d/2.

%ZzAs,sth(A)Zzw
5 7

>0
AR => A5 7 = ZAZ A) <1
S, T

We do not know if entries of A are rational, therefore, above proof
doesn't suffice. We now try to find an A.



Connection between SDP and SoS: Find A

).

Proof Cont...
Recall

Nl

f(x) = <(1,x)®‘z’,A (1,%)®

def
=ga(x)

Then, we form the following constraints:
1. A=0.
2. mult (ga(x)) = mult (f(x)).
Therefore, we get the following SDP feasibility problem:

YuC[n]:f = Z As.T; ((n + 1)dconstraints)
odd(5+T)=u

A=0.

It is unknown if we can decide the feasibility of this system.
Therefore, we try to solve it approximately.



Tools for Approximately Solving SDP

Definition (Weak Separation Oracle)
Let K C RN be a convex set. Weak Separation Oracle:
. Input: Rational vector x € RN, and € > 0.

. Output: Either

- Correctly asserts that x € K + B(0,¢), or,
- Returns an "“almost separating hyperplane”, i.e., returns
y #0 € RV such that

(y,x) > (y,z) —¢ellyll,,Vz € K.




Tools for Approximately Solving SDP

Theorem (Grotschel, Lovasz, Schrijver '81)

Let K be a closed, convex, and bounded set. Suppose there exists
R > r >0, such that B(p,r) C K C B(0,R). Assume that we
have a poly-time weak-separation oracle for K. Then given any
rational vector v e RN, we can compute a rational vector x € RN
such that

1. xe K.
2. (v,x) > (v,z) — ¢, Vz € K.
Running time: poly (log R/r 4+ log1/e + N).

> Interpreting theorem: If | have a convex set K with non-empty
interior, with a weak separation oracle, then | can
approximately maximize v' x over K.



Proof Cont...
Applying this to our problem. We define the following:

S={A|A%0,(C,A) = b, i, |AllE < 72}
We note that S is convex, bounded, closed. Now,

B(p,r)ZS.

Therefore, relax the equality constraints. And find a point in S,
S = {A]A (G A) = [b; — &, b + ], ¥, | Al < B2} .

Now, B (p,r) C S’ because for any point A€ S, then A+ 46/ € S’
for ¢ small enough.



Applying the Theorem

Proof Cont...

. We can find some f’ such that ' has a degree-d SoS

certificate and |f, — /| < e.
. Note: f(x) = f'(x)+ (f — f')(x).

. Small coefficient: 3, <qg fo— ] < e(n+1)7.

. Let L:E|u‘§d ?U_?Lj

. Then, L+ f — f’ has a degree d-SoS certificate.

. Then, it implies, L + f has a degree-d SoS certificate, i.e.,
e(n+1)9 + f has a degree-d SoS certificate.

. e= 5’O(n_d) finishes the proof.




L+ f — f' has a degree d-SoS certificate
Proof.

Claim
Let f =3 5<q fsxs. Then (1 — xs) and (1 + xs) has a degree-d
SoS certificate.

.= 25 ‘)?5’ (Sign(?s)XS).

. By claim: 3¢ ‘IA‘S‘ (1 + sign(?s)xs> has a degree-d SoS
certificate.

Z‘fs’ (1+81gn fs xs) Z‘fs’ +Z)fs‘slgn fs)x
:Z’f5’+f.

- Note: to see connection with L, function f used in the claim
here is f — ' in the previous proof.

U



Proof of Claim

Proof.

. Let |S| < d.
. S=T1UT,, |T1| < |T2| Sd/Q

. Then x5 = x1, - XT,.

2 2 2
(XTl - XTz) = X7, T X7, — 2XT, XT,
=2- 2X7‘1XT2

1
S (1=xs) = E(Xn —x7,)%.

. Similarly for (1 + xs).



Halfway Through
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What if Degree-d SoS Certificate Doesn't Exist for f7?

In that case
1. 3 x, such that f(x) <0, or,

2. If d <2n, then f may be non-negative and yet a degree-d
SoS certificate doesn't exist.

> , if f does not have a degree-d SoS certificate, we
would like the “algorithm” to output an x such that f(x) < 0.

» However, that may not always be possible.

» To achieve that aim, we construct an object called
Pseudo-distribution.



Towards Constructing Pseudo-distribution

Fact
The set SoSy C R?", where

SoSy & {f | f has a degree-d SoS certificate} ,

is a closed, convex cone.

Theorem (Hyperplane Separation Theorem)

Suppose K C RN s a convex set. Let v & K. Then there exists a
hyperplane H = {x|(u, x) > 0}, such that K CH, and v & H.



Towards Constructing Pseudo-distribution
Suppose p € SoSy. Then, there exists p such that p is on one side
of the hyperplane (defined by 1) and SoSy4 on the other side, i.e.,

S ux) - px) <0,

xe{-1,1}"
Z u(x) - f(x) >0, Vf € SoSq
xe{-1,1}"
Z pu(x)=1, (by scaling) .
xe{-1,1}"

- Hypothetical: Suppose p > 0, then it describes a probability
distribution over {—1,1}".
. Therefore, there exists a distribution such that for p & SoS4
Ep<Q0,
m

Ef >0, Vf € SoSy.



Pseudo-distribution

» Notation: Pseudo-expectation (when p is not non-negative)

uf = Z wu(x) - f(x).

xe{-1,1}"

E

Definition (Pseudo-distribution)
A degree-d pseudo-distribution over {—1,1}" is a function
p:{—1,1}" — R such that E, satisfies:

1L E1=1.

2. Vf :deg(f) < ¢, E,f2>0.



Fact
Every degree > 2n pseudo-distribution p is an actual probability
distribution.

Proof Sketch.

. Define indicator polynomial f, : {—1,1}" — R, such that
fy(y) =1, and f,(x) =0, Vx # y. Moreover, deg(f) < n.

. By definition IEMI‘}? > 0.

. Construct the distribution prob(y) gef fEuﬂf. And this
distribution is the pseudo-distribution .



Specifying Pseudo-distributions

Pseudo-distributions can be specified as a vector ' € R,

Claim

For all degree-d pseudo-distributions, there exists a degree d
multi-linear polynomial 1/ : {—1,1}" — R, such that Eup E p
for all p such that deg(p) < d.

Proof Sketch.
Write 1 and p in multilinear form.

p(x) = > fisxs
SC[n]
p(x)= > Psxs.

5¢|n],|S|<d

Eup = (u, p) = {1/, p), where 1/ is a degree < d part of p. O



» Notation- Pseudo-moments: Fy(1, x)®9.

(Expectation of a vector) expectations of degree < d
monomials.



Pseudo-distribution and PSD Matrices

Proposition
i is a degree-d pseudo-distribution iff
1L E,1=1,

2. B, (1, %)% ((1,0)%2 ) > 0.

degree-d pseudo-moment matrix

» Parsing notation: The S, T-th entry of the pseudo-moment
matrix is EMXSXT = IE Xodd(S+T)-



Proof.
. Let f be a degree-d/2 polynomial.

A\ T ~
. IEMf2 =c (f) Mg»f, because

. But since f2 is a degree-d SoS, the quadratic form is positive,
and therefore, My 5 = 0.

O



Formal Pseudo-expectation Proof

Theorem
For every f, every even d € Z>q, there exists a degree-d SoS
certificate of f iff

vV degree-d pseudo-distribution over {—1,1}", Euf > 0.

Proof

- If Part: If f h~as a degree-d SoS certificate,
E.f = ZigrEug,? > 0.

- Only If Part: Suppose f &€ SoSy, then there exists a
hyperplane with p as the normal vector such that

E.f <0,
E.g* >0, Vg such that deg(g) < d/2.

Need: £,1 > 0.



E,1>0

Proof Cont...

. We know, 3L > 0 such that L 4 f has a degree-d SoS

certificate. We have fEMf < 0, and

(L+f)
ul
ul

ﬁ

>0.



Pseudo-distribution and SDP Connection

Theorem

Suppose f does not have a degree-d S0S certificate. Then, there
exists a poly (nd, log1/e, sz’ze(f))—time algorithm to compute a
pseudo-distribution . such that Eﬂf <e.

Proof Sketch.
Form a SDP system- Make variables for all possible monomials:
E,xs, |S] < d.

. Constraint 1: E,1 = 1.

~ T
. Constraint 2: E#(l,x)‘@g ((1,x)®%> = 0.

. Constraint 3: INEuf < 0.

Use SDP solving up to slack ¢ to obtain the theorem
statement.



SoS Algorithms

Algorithms for computing
SoS certificates, and Pseudo-distributions
are called SoS algorithms.
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