Sum of Squares: Part 1

Apoorv Vikram Singh

February 3, 2021

Introduction

Reason two basic problems about polynomial inequalities

1. Feasibility of polynomial system.

$$egin{aligned} &p_1(oldsymbol{x})\geq 0\ &dots\ &p_m(oldsymbol{x})\geq 0 \end{aligned}$$

Is there an x such that (1) is satisfied?

2. Checking non-negativity: Is $q(x) \ge 0$, $\forall x$ satisfying (1) ?

Justification: Feasibility

Feasibility checking is highly expressive.

- Example: MaxCut.
- . Input: G = (V, E), |V| = n.
- . Goal: Find $S \subseteq V$ such that $|E(S,\overline{S})|$ is maximized.
- . Polynomial Feasibility: For some $\beta \in \mathbb{Z}^+$,

$$\frac{1}{4}\sum_{(i,j)\in E}(\mathbf{x}_i-\mathbf{x}_j)^2=\beta$$

$$\mathbf{x}_i^2 = 1, \qquad \forall 1 \le i \le n.$$

. n + 1 degree-2 polynomials. Enumerate over polynomial number of values of β and solve MaxCut.

Other examples: MaxClique, Max 3-SAT, Knapsack. Therefore, polynomial feasibility checking problem is *NP*-Hard.

Goal

 Analyze a relaxation for the feasibility problem, and try to find interesting situations where one can get a poly-time algorithms.

Justification: Non-Negativity

- Checking non-negativity: Given $f : \{-1, 1\}^n \to \mathbb{R}$ with rational coefficients, decide if:
 - $f \geq 0$, $orall oldsymbol{x} \in \{-1,1\}^n$, or,
 - find an $\boldsymbol{x} \in \{-1,1\}^n$ such that $f(\boldsymbol{x}) < 0$.
- Example MaxCut: Decide if MaxCut $\leq c$.

. Let
$$f_G(\mathbf{x}) \stackrel{\text{def}}{=} \frac{1}{4} \sum_{(i,j) \in E} (\mathbf{x}_i - \mathbf{x}_j)^2$$
.

. Decide if $c - f_G(\boldsymbol{x}) \geq 0$, $\forall \boldsymbol{x} \in \{-1, 1\}^n$.

Certifying Non-Negativity

Given $f : \{-1,1\}^n \to \mathbb{R}$, find an "efficiently verifiable" certificate of non-negativity.

Definition (SoS cert of non-neg (or) SoS proof of non-neg)

A degree-d SoS certificate of non-negativity of $f : \{-1,1\}^n \to \mathbb{R}$ is a list of polynomials $g_1, \ldots, g_r : \{-1,1\}^n \to \mathbb{R}$, such such that

- . $\deg(g_i) \leq d/2$, and
- . $f(\boldsymbol{x}) = \sum_{i \leq r} g_i^2(\boldsymbol{x}), \ \forall \boldsymbol{x} \in \{-1, 1\}^n.$

Efficiently Verifiable (?)

Polynomials f, g_1, \ldots, g_r are represented as a vector of coefficients.

- 1. How large if r? ($\leq n^d$, see later)
- 2. How large are coefficients of g_i ?

Efficiently Verifiable

Proposition (Efficiently Verifiable)

Suppose $r \leq n^d$, all coefficients of g_i are bounded in magnitude by $2^{\text{poly}(n^d)}$. Then the identity $f = \sum_{i \leq r} g_i^2$ over all $\mathbf{x} \in \{-1, 1\}^n$ can be checked in $\text{poly}(n^d)$ time.

Proof.

- . Given g_i , can compute g_i^2 , and $\sum_{i \leq r} g_i^2$ in polynomial time.
- . Check if $(f \sum_{i \leq r} g_i^2)(\mathbf{x}) = 0$, $\forall \mathbf{x} \in \{-1, 1\}^n$.
- . Using the fact that coefficient vector representation is unique, just check if $f \sum_{i \le r} g_i^2 = \mathbf{0}$

Fact (Unique Representation)

 $\forall f: \{-1,1\}^n \to \mathbb{R}$, there exists a <u>unique</u> representation of f: The multi-linear representation of f

$$f = \sum_{S \subseteq [n]} \hat{f}(S) \prod_{i \in S} \mathbf{x}_i$$

(this representation is its Fourier transform)

 \implies coefficient vector representation is unique. (multilinear representation exists because $\mathbf{x}_i^2 = 1$)

Are non-negative functions always certifiable?

Proposition (Certifiablity of non-negative functions)

Let $f : \{-1,1\}^n \to \mathbb{R}$ be non-negative over $\{-1,1\}^n$. Then, there exists a deg(2n)-SoS certificate of non-negativity.

Proof.

- . Consider $g: \{-1,1\}^n \to \mathbb{R}$, and $g(\mathbf{x}) = \sqrt{f(\mathbf{x})}$.
- . Every function on $\{-1,1\}^n$ is a polynomial of deg $\leq n$.
- $f = g^2 \implies \deg(2n)$ -SoS Certificate.

Tensor Notation

- . Suppose vector $\mathbf{v} \in \mathbb{R}^n$.
- . $\mathbf{v}^{\otimes 2} \in \mathbb{R}^{n^2}$, where $\mathbf{v}(i,j) = \mathbf{v}_i \mathbf{v}_j$. . $\mathbf{v}^{\otimes k} \in \mathbb{R}^{n^k}$.

Proving Efficient Verifiability

Theorem (PSD Matrices and SoS Certificates)

 $f: \{-1,1\}^n \to \mathbb{R}$ has a deg(d)-SoS certificate of non-negativity iff there exists a matrix A such that $A \succcurlyeq 0$, and

$$f(\boldsymbol{x}) = \left\langle (1, \boldsymbol{x})^{\otimes \frac{d}{2}}, A \cdot (1, \boldsymbol{x})^{\otimes \frac{d}{2}} \right\rangle \,.$$

- Parsing Notation:
 - . $(1, \mathbf{x}) \in \mathbb{R}^{(n+1)}$.
 - . $(1, \mathbf{x})^{\otimes \frac{d}{2}}$: populate in a vector all possible monomials in the variable \mathbf{x} of degree at most d/2.
 - $A \in \mathbb{R}^{(n+1)^{d/2} \times (n+1)^{d/2}}$

Proof

- If Part:

$$\begin{aligned} f(\mathbf{x}) &= \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, A \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle \\ &= \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, (B^{\top}B) \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle \\ &= \left\langle B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}}, B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle \\ &= \left\| B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\|^{2} . \end{aligned}$$
(2)

- . Let $g_i({m x}) = \left\langle e_i, B \cdot (1, {m x})^{\otimes rac{d}{2}}
 ight
 angle$, i.e., *i*-th entry of the vector.
- . *B* is a matrix of constants, applied to monomials of degree at most d/2, therefore, $deg(g_i) \le d/2$.
- . Therefore,

$$f(\mathbf{x}) = \sum_{i=1}^{(n+1)^{\otimes d/2}} g_i^2(\mathbf{x})$$

Proof Cont...

- Only if Part: Suppose *f* has a degree-*d* SoS certificate.

$$f = \sum_{i \leq r} g_i^2$$
, and $\underbrace{g_i(\mathbf{x})}_{\deg \leq d/2} = \left\langle \mathbf{v}_i, (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle$.

$$f(\mathbf{x}) = \sum_{i \leq r} \left\langle \mathbf{v}_i, (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle^2$$
$$= \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, \underbrace{\left(\sum_{i \leq r} \mathbf{v}_i \mathbf{v}_i^{\top}\right)}_{\succeq 0} \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle.$$

Efficient Verifiability

Corollary (Bound on r)

If $f : \{-1,1\}^n \to \mathbb{R}$ has a degree-d SoS certificate, then it has a certificate with $r \le (n+1)^{d/2}$.

Proof.

Follows from (2):

$$f(\mathbf{x}) = \left\| B \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\|^2$$

٠

Lemma (Bit-complexity of SoS proofs)

Suppose f has a degree-d SoS certificate over $\{-1,1\}^n$. Then, we can find a degree-d SoS certificate for $f + \varepsilon'$ in time poly $(n^d, \log 1/\varepsilon', size(f))$.

► {-1,1}ⁿ is important, and doesn't necessarily hold for other domains.

Proof

Since we are given f, we know that it can be efficiently represented. Therefore, we try to bound the entries of A in terms of f.

$$f(\mathbf{x}) = \left\langle (1, \mathbf{x})^{\otimes \frac{d}{2}}, A \cdot (1, \mathbf{x})^{\otimes \frac{d}{2}} \right\rangle, \text{ for some } A.$$

$$f = \sum_{u} \hat{f}_{u} \mathbf{x}_{u}, \text{ where } \mathbf{x}_{u} = \prod_{i \in u} \mathbf{x}_{i}.$$

. Expanding the inner product, we see $\hat{f}_u = \sum_{S,T} A_{S,T}$, such that $\operatorname{odd} (S + T) = u$, and $|S|, |T| \le d/2$.

$$\widehat{f}_{\emptyset} = \sum_{\mathcal{S}} \mathcal{A}_{\mathcal{S},\mathcal{S}} = \mathrm{tr}\left(\mathcal{A}
ight) = \sum_{i} rac{\lambda_{i}(\mathcal{A})}{\geq 0} \; .$$

$$\|A\|_F^2 = \sum_{S,T} A_{S,T}^2 = \sum_i \lambda_i^2(A) \leq \hat{f}_{\emptyset}^2.$$

We do not know if entries of A are rational, therefore, above proof doesn't suffice. We now try to find an A.

Connection between SDP and SoS: Find A

Proof Cont... Recall

$$f(\mathbf{x}) = \left\langle \underbrace{(1, \mathbf{x})^{\otimes rac{d}{2}}, A \cdot (1, \mathbf{x})^{\otimes rac{d}{2}}}_{\stackrel{ ext{def}}{=} g_A(\mathbf{x})}
ight
angle \, ,$$

Then, we form the following constraints:

- 1. $A \succeq 0$.
- 2. mult $(g_A(\mathbf{x})) =$ mult $(f(\mathbf{x}))$.

Therefore, we get the following SDP feasibility problem:

$$\begin{aligned} \forall u \subseteq [n] : \hat{f}_u &= \sum_{\text{odd}(S+T)=u} A_{S,T}; \qquad \left((n+1)^d \text{constraints} \right) \\ A &\succcurlyeq 0 \,. \end{aligned}$$

It is unknown if we can decide the feasibility of this system. Therefore, we try to solve it approximately.

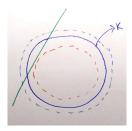
Tools for Approximately Solving SDP

Definition (Weak Separation Oracle)

Let $K \subseteq \mathbb{R}^N$ be a convex set. Weak Separation Oracle:

- . Input: Rational vector $\mathbf{x} \in \mathbb{R}^N$, and $\varepsilon > 0$.
- . Output: Either
 - Correctly asserts that $oldsymbol{x}\in\mathcal{K}+\mathcal{B}\left(0,arepsilon
 ight)$, or,
 - Returns an "almost separating hyperplane", i.e., returns $\pmb{y}\neq \pmb{0}\in\mathbb{R}^N$, such that

$$\langle \boldsymbol{y}, \boldsymbol{x} \rangle > \langle \boldsymbol{y}, \boldsymbol{z} \rangle - \varepsilon \left\| \boldsymbol{y} \right\|_2, \forall \boldsymbol{z} \in K.$$



Tools for Approximately Solving SDP

Theorem (Grötschel, Lovász, Schrijver '81)

Let K be a closed, convex, and bounded set. Suppose there exists R > r > 0, such that $\mathcal{B}(\mathbf{p}, r) \subseteq K \subseteq \mathcal{B}(\mathbf{0}, R)$. Assume that we have a poly-time weak-separation oracle for K. Then given any rational vector $\mathbf{v} \in \mathbb{R}^N$, we can compute a rational vector $\mathbf{x} \in \mathbb{R}^N$ such that

- **1**. $x \in K$.
- 2. $\langle \boldsymbol{v}, \boldsymbol{x} \rangle \geq \langle \boldsymbol{v}, \boldsymbol{z} \rangle \varepsilon, \ \forall \boldsymbol{z} \in K.$

Running time: poly $(\log R/r + \log 1/\varepsilon + N)$.

Interpreting theorem: If I have a convex set K with non-empty interior, with a weak separation oracle, then I can approximately maximize v[⊤]x over K.

Proof Cont...

Applying this to our problem. We define the following:

$$\mathcal{S} = \left\{ \mathcal{A} \, \Big| \, \mathcal{A} \succcurlyeq 0, \langle \mathcal{C}_i, \mathcal{A}
angle = b_i, orall i, \|\mathcal{A}\|_F^2 \leq \hat{f}_{\emptyset}^2
ight\} \, .$$

We note that S is convex, bounded, closed. Now,

$$\mathcal{B}(\boldsymbol{p},r) \not\subseteq S$$
.

Therefore, relax the equality constraints. And find a point in S',

$$\mathcal{S}' = \left\{ \mathcal{A} \left| \mathcal{A} \succcurlyeq 0, \langle \mathcal{C}_i, \mathcal{A}
ight
angle = [b_i - arepsilon, b_i + arepsilon], orall i, \|\mathcal{A}\|_F^2 \leq \hat{f}_{\emptyset}^2
ight\} \,.$$

Now, $\mathcal{B}(\boldsymbol{p}, r) \subseteq S'$ because for any point $A \in S$, then $A + \delta I \in S'$ for δ small enough.

Applying the Theorem

Proof Cont...

- . We can find some f' such that f' has a degree-d SoS certificate and $|\hat{f}_u \hat{f}'_u| \le \varepsilon$.
- . Note: f(x) = f'(x) + (f f')(x).
- . Small coefficient: $\sum_{|u| \leq d} \left| \hat{f}_u \hat{f}'_u \right| \leq \varepsilon (n+1)^d.$

. Let
$$L = \sum_{|u| \le d} \left| \hat{f}_u - \hat{f}'_u \right|$$
.

- . Then, L + f f' has a degree *d*-SoS certificate.
- . Then, it implies, L + f has a degree-d SoS certificate, i.e., $\varepsilon(n+1)^d + f$ has a degree-d SoS certificate. . $\varepsilon = \varepsilon' \mathcal{O}(n^{-d})$ finishes the proof.

L + f - f' has a degree *d*-SoS certificate

Proof.

Claim

Let $f = \sum_{|S| \le d} \hat{f}_S \mathbf{x}_S$. Then $(1 - \mathbf{x}_S)$ and $(1 + \mathbf{x}_S)$ has a degree-d SoS certificate.

 $f = \sum_{S} \left| \hat{f}_{S} \right| \left(\operatorname{sign}(\hat{f}_{S}) \boldsymbol{x}_{S} \right).$ By claim: $\sum_{S} \left| \hat{f}_{S} \right| \left(1 + \operatorname{sign}(\hat{f}_{S}) \boldsymbol{x}_{S} \right) \text{ has a degree-} d \operatorname{SoS} \text{ certificate.}$

$$\sum_{S} \left| \hat{f}_{S} \right| \left(1 + \operatorname{sign}(\hat{f}_{S}) \boldsymbol{x}_{S} \right) = \sum_{S} \left| \hat{f}_{S} \right| + \sum_{S} \left| \hat{f}_{S} \right| \operatorname{sign}(\hat{f}_{S}) \boldsymbol{x}_{S}$$
$$= \sum_{S} \left| \hat{f}_{S} \right| + f.$$

- Note: to see connection with L, function f used in the claim here is f - f' in the previous proof.

Proof of Claim

Proof.

. Let
$$|S| \le d$$
.
. $S = T_1 \cup T_2$, $|T_1| \le |T_2| \le d/2$.
. Then $\mathbf{x}_s = \mathbf{x}_{T_1} \cdot \mathbf{x}_{T_2}$.

$$(\mathbf{x}_{T_1} - \mathbf{x}_{T_2})^2 = \mathbf{x}_{T_1}^2 + \mathbf{x}_{T_2}^2 - 2\mathbf{x}_{T_1}\mathbf{x}_{T_2}$$

= 2 - 2\mathbf{x}_{T_1}\mathbf{x}_{T_2}
$$\therefore (1 - \mathbf{x}_S) = \frac{1}{2}(\mathbf{x}_{T_1} - \mathbf{x}_{T_2})^2.$$

. Similarly for $(1 + \mathbf{x}_S)$.

Halfway Through

Sum of Squares: Part 1 (continued)

Apoorv Vikram Singh

February 10, 2021

What if Degree-d SoS Certificate Doesn't Exist for f?

In that case

- 1. $\exists x$, such that f(x) < 0, or,
- If d ≤ 2n, then f may be non-negative and yet a degree-d SoS certificate doesn't exist.
- ► Ideally, if f does not have a degree-d SoS certificate, we would like the "algorithm" to output an x such that f(x) < 0.</p>
- However, that may not always be possible.
- To achieve that ideal aim, we construct an object called Pseudo-distribution.

Towards Constructing Pseudo-distribution

Fact The set $SoS_d \subseteq \mathbb{R}^{2^n}$, where

 $SoS_d \stackrel{\text{def}}{=} \{f \mid f \text{ has a degree-d SoS certificate}\},\$

is a closed, convex cone.

Theorem (Hyperplane Separation Theorem) Suppose $K \subseteq \mathbb{R}^N$ is a convex set. Let $\mathbf{v} \notin K$. Then there exists a hyperplane $\mathcal{H} = {\mathbf{x} | \langle \mathbf{u}, \mathbf{x} \rangle \ge 0}$, such that $K \subseteq \mathcal{H}$, and $\mathbf{v} \notin \mathcal{H}$.

Towards Constructing Pseudo-distribution

Suppose $p \notin SoS_d$. Then, there exists μ such that p is on one side of the hyperplane (defined by μ) and SoS_d on the other side, i.e.,

$$\begin{split} &\sum_{\boldsymbol{x}\in\{-1,1\}^n} \mu(\boldsymbol{x}) \cdot p(\boldsymbol{x}) < 0, \\ &\sum_{\boldsymbol{x}\in\{-1,1\}^n} \mu(\boldsymbol{x}) \cdot f(\boldsymbol{x}) \ge 0, \\ &\sum_{\boldsymbol{x}\in\{-1,1\}^n} \mu(\boldsymbol{x}) = 1, \end{split} \qquad \qquad \forall f \in \mathrm{SoS}_d \end{split}$$

- Hypothetical: Suppose $\mu \ge 0$, then it describes a probability distribution over $\{-1,1\}^n$.
- . Therefore, there exists a distribution such that for $p \not\in \mathrm{SoS}_d$

$$\mathbb{E}_{\mu} p < 0,$$

 $\mathbb{E}_{\mu} f \geq 0,$ $\forall f \in \mathrm{SoS}_{d}.$

Pseudo-distribution

▶ Notation: Pseudo-expectation (when µ is not non-negative)

$$\tilde{\mathbb{E}}_{\mu}f = \sum_{\mathbf{x} \in \{-1,1\}^n} \mu(\mathbf{x}) \cdot f(\mathbf{x}).$$

Definition (Pseudo-distribution)

A degree-*d* pseudo-distribution over $\{-1,1\}^n$ is a function $\mu : \overline{\{-1,1\}}^n \to \mathbb{R}$ such that $\tilde{\mathbb{E}}_{\mu}$ satisfies: 1. $\tilde{\mathbb{E}}_{\mu} 1 = 1$. 2. $\forall f : \deg(f) \leq \frac{d}{2}, \ \tilde{\mathbb{E}}_{\mu} f^2 \geq 0.$

Fact

Every degree $\geq 2n$ pseudo-distribution μ is an actual probability distribution.

Proof Sketch.

- . Define indicator polynomial $f_{\mathbf{y}} : \{-1,1\}^n \to \mathbb{R}$, such that $f_{\mathbf{y}}(\mathbf{y}) = 1$, and $f_{\mathbf{y}}(\mathbf{x}) = 0$, $\forall \mathbf{x} \neq \mathbf{y}$. Moreover, $\deg(f) \leq n$. . By definition $\tilde{\mathbb{E}}_{\mu} f_{\mathbf{y}}^2 \geq 0$.
- . Construct the distribution $\operatorname{prob}(\mathbf{y}) \stackrel{\text{def}}{=} \tilde{\mathbb{E}}_{\mu} f_{\mathbf{y}}^2$. And this distribution is the pseudo-distribution μ .

Specifying Pseudo-distributions

Pseudo-distributions can be specified as a vector $\mu' \in \mathbb{R}^{n^d}$.

Claim

For all degree-d pseudo-distributions, there exists a degree-d multi-linear polynomial $\mu' : \{-1,1\}^n \to \mathbb{R}$, such that $\tilde{\mathbb{E}}_{\mu}p = \tilde{\mathbb{E}}_{\mu'}p$ for all p such that $\deg(p) \leq d$.

Proof Sketch.

Write μ and p in multilinear form.

$$\mu(\mathbf{x}) = \sum_{S \subseteq [n]} \hat{\mu}_S \mathbf{x}_S$$
$$p(\mathbf{x}) = \sum_{S \subseteq [n], |S| \le d} \hat{p}_S \mathbf{x}_S.$$

 $\tilde{\mathbb{E}}_{\mu} p = \langle \mu, p \rangle = \langle \mu', p \rangle$, where μ' is a degree $\leq d$ part of μ .

Notation- Pseudo-moments: 𝔅µ(1, x)^{⊗d}.
 (Expectation of a vector) expectations of degree ≤ d monomials.

Pseudo-distribution and PSD Matrices

Proposition

 μ is a degree-d pseudo-distribution \underline{iff}

1. $\tilde{\mathbb{E}}_{\mu} 1 = 1$,

2.
$$\underbrace{\tilde{\mathbb{E}}_{\mu}(1,\boldsymbol{x})^{\otimes \frac{d}{2}}\left((1,\boldsymbol{x})^{\otimes \frac{d}{2}}\right)^{\top}}_{=} \geq 0.$$

degree-d pseudo-moment matrix

▶ Parsing notation: The S, T-th entry of the pseudo-moment matrix is E
_µx_Sx_T = E
µx{odd(S+T)}.

Proof.

. Let f be a degree-d/2 polynomial.

.
$$\tilde{\mathbb{E}}_{\mu}f^{2} = c\left(\hat{f}\right)^{\top}M_{d/2}\hat{f}$$
, because

$$\tilde{\mathbb{E}}_{\mu}f^{2} = \tilde{\mathbb{E}}_{\mu}\left(\sum_{S}\hat{f}_{S}\boldsymbol{x}_{S}\right)^{2} = \tilde{\mathbb{E}}_{\mu}\sum_{S,T}\hat{f}_{S}\hat{f}_{T}\boldsymbol{x}_{S}\boldsymbol{x}_{T}$$
$$= \sum_{S,T}\hat{f}_{S}\hat{f}_{T}\tilde{\mathbb{E}}_{\mu}\boldsymbol{x}_{S}\boldsymbol{x}_{T}.$$

. But since f^2 is a degree-d SoS, the quadratic form is positive, and therefore, $M_{d/2} \succcurlyeq 0$.

Formal Pseudo-expectation Proof

Theorem

For every f, every even $d\in\mathbb{Z}_{\geq0},$ there exists a degree-d SoS certificate of f iff

 \forall degree-d pseudo-distribution over $\{-1,1\}^n$, $\mathbb{\tilde{E}}_{\mu}f \geq 0$.

Proof

- If Part: If f has a degree-d SoS certificate, $\tilde{\mathbb{E}}_{\mu}f = \sum_{i \leq r} \tilde{\mathbb{E}}_{\mu}g_i^2 \geq 0.$
- Only If Part: Suppose $f \notin SoS_d$, then there exists a hyperplane with μ as the normal vector such that

$$egin{array}{ll} & ilde{\mathbb{E}}_{\mu}f < 0, \ & ilde{\mathbb{E}}_{\mu}\,g^2 \geq 0, \end{array} & orall g \ ext{such that} \ \deg(g) \leq d/2 \,. \end{array}$$

Need: $\tilde{\mathbb{E}}_{\mu}1 > 0$.

Proof Cont...

. We know, $\exists L>0$ such that L+f has a degree-d SoS certificate. We have $\tilde{\mathbb{E}}_{\mu}f<0$, and

$$egin{aligned} & ilde{\mathbb{E}}_{\mu}(L+f)\geq 0\ & ilde{\mathbb{E}}_{\mu}L\geq - ilde{\mathbb{E}}_{\mu}f\ &L\, ilde{\mathbb{E}}_{\mu}1\geq - ilde{\mathbb{E}}_{\mu}f\ & ilde{\mathbb{E}}_{\mu}1\geq - ilde{\mathbb{E}}_{\mu}f\ & ilde{\mathbb{E}}_{\mu}1\geq rac{- ilde{\mathbb{E}}_{\mu}f}{I}>0\,. \end{aligned}$$

Pseudo-distribution and SDP Connection

Theorem

Suppose f does not have a degree-d SoS certificate. Then, there exists a poly $(n^d, \log 1/\varepsilon, size(f))$ -time algorithm to compute a pseudo-distribution μ such that $\tilde{\mathbb{E}}_{\mu}f < \varepsilon$.

Proof Sketch.

Form a SDP system- Make variables for all possible monomials: $\tilde{\mathbb{E}}_{\mu} \mathbf{x}_{S}$, $|S| \leq d$.

- . Constraint 1: $\tilde{\mathbb{E}}_{\mu} 1 = 1$.
- . Constraint 2: $\tilde{\mathbb{E}}_{\mu}(1, \boldsymbol{x})^{\otimes \frac{d}{2}} \left((1, \boldsymbol{x})^{\otimes \frac{d}{2}} \right)^{\top} \succcurlyeq 0.$
- . Constraint 3: $ilde{\mathbb{E}}_{\mu}f < 0.$

Use SDP solving up to slack ε to obtain the theorem statement.

SoS Algorithms

Algorithms for computing SoS certificates, and Pseudo-distributions are called SoS algorithms.